Change detection under autocorrelation
نویسندگان
چکیده
Judgmental detection of changes in time series is an ubiquitous task. Previous research has shown that human observers are often relatively poor at detecting change, especially when the series are serially dependent (autocorrelated). We present two experiments in which participants were asked to judge the occurrence of changes in time series with varying levels of autocorrelation. Results show that autocorrelation increases the difficulty of discriminating change from no change, and that observers respond to this increased difficulty by biasing their decisions towards change. This results in increased false alarm rates, while leaving hit rates relatively intact. We present a rational (Bayesian) model of change detection and compare it to two heuristic models that ignore autocorrelation in the series. Participants appeared to rely on a simple heuristic, where they first visually match a change function to a series, and then determine whether the putative change exceeds the variability in the data.
منابع مشابه
Traffic Condition Detection in Freeway by using Autocorrelation of Density and Flow
Traffic conditions vary over time, and therefore, traffic behavior should be modeled as a stochastic process. In this study, a probabilistic approach utilizing Autocorrelation is proposed to model the stochastic variation of traffic conditions, and subsequently, predict the traffic conditions. Using autocorrelation of the time series samples of density and flow which are collected from segments...
متن کاملSensitivity of climate change detection and attribution to the characterization of internal climate variability
The Intergovernmental Panel on Climate Change’s (IPCC) ‘‘very likely’’ statement that anthropogenic emissions are affecting climate is based on a statistical detection and attribution methodology that strongly depends on the characterization of internal climate variability. In this paper, the authors test the robustness of this statement in the case of global mean surface air temperature, under...
متن کاملRapid detection of new and expanding human settlements in the Limpopo province of South Africa using a spatio-temporal change detection method
Recent development has identified the benefits of using hyper-temporal satellite time series data for land cover change detection and classification in South Africa. In particular, the monitoring of human settlement expansion in the Limpopo province is of relevance as it is the one of the most pervasive forms of land-cover change in this province which covers an area of roughly 125 000km. In th...
متن کاملMulti-channel Remote Sensing Data and Orthogonal Transformations for Change Detection
This paper describes the multivariate alteration detection (MAD) transformation which is based on the established canonical correlation analysis. It also proposes post-processing of the change detected by the MAD variates by means of maximum autocorrelation factor (MAF) analysis. As opposed to most other multivariate change detection schemes the MAD and the combined MAF/MAD transformations are ...
متن کاملA Novel Multi-user Detection Approach on Fluctuations of Autocorrelation Estimators in Non-Cooperative Communication
Recently, blind multi-user detection has become an important topic in code division multiple access (CDMA) systems. Direct-Sequence Spread Spectrum (DSSS) signals are well-known due to their low probability of detection, and secure communication. In this article, the problem of blind multi-user detection is studied in variable processing gain direct-sequence code division multiple access (VPG D...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره شماره
صفحات -
تاریخ انتشار 2012